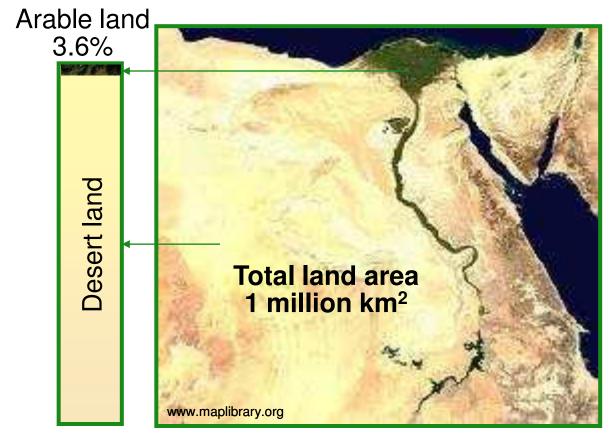
From sewage water to plantation forests in desert lands of Egypt

Hany El Kateb Institute of Silviculture Technische Universität München (TUM)

Egypt

Desert lands in Egypt



Satellite image of Egypt

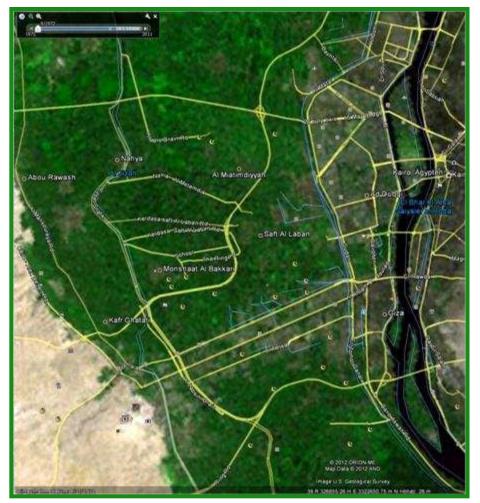
Climate: Mediterranean in north (hot-dry summer 27, and a warm winter 15), and continental in south (40 in summer and 13 in winter)

Annual average precipitation: 10 mm (150-200 in north and 2 mm in south)

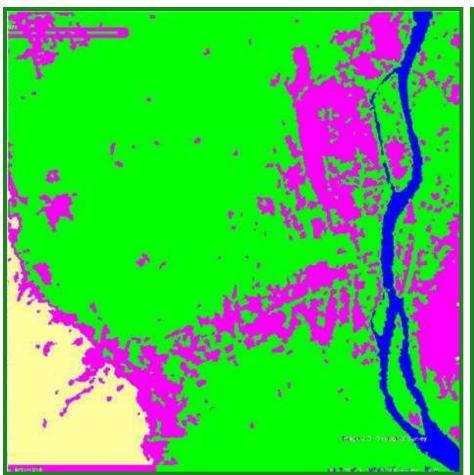
Humidity: High in the north with 70% during summer, and low in the south with 13%.

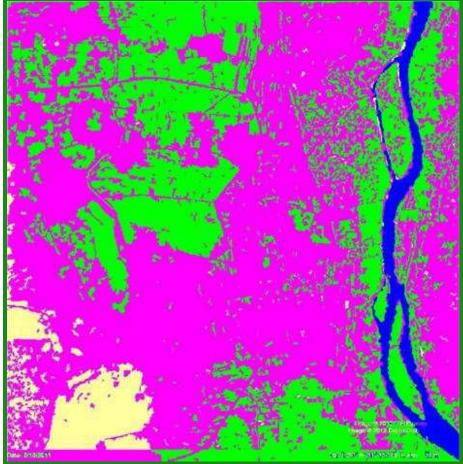
The Nile and Nile Delta

The pyramids:100 years ago and today



The Nile delta on the outskirts of Cairo


Satellite image 1972

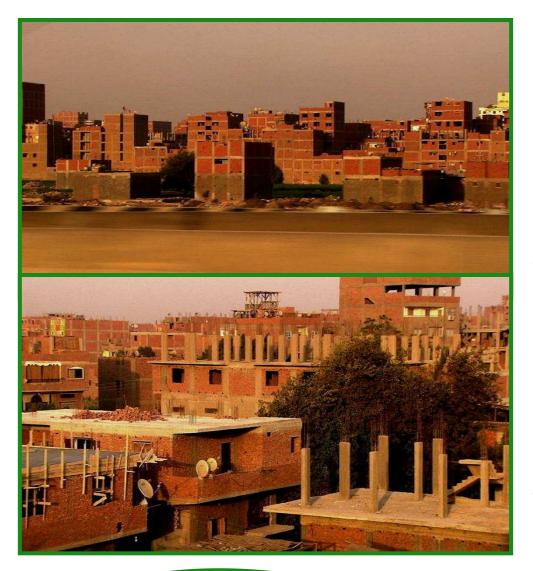

Satellite image 2011

The Nile delta on the outskirts of Cairo (continued)

Land cover 1972

Land cover 2011

2011


61%

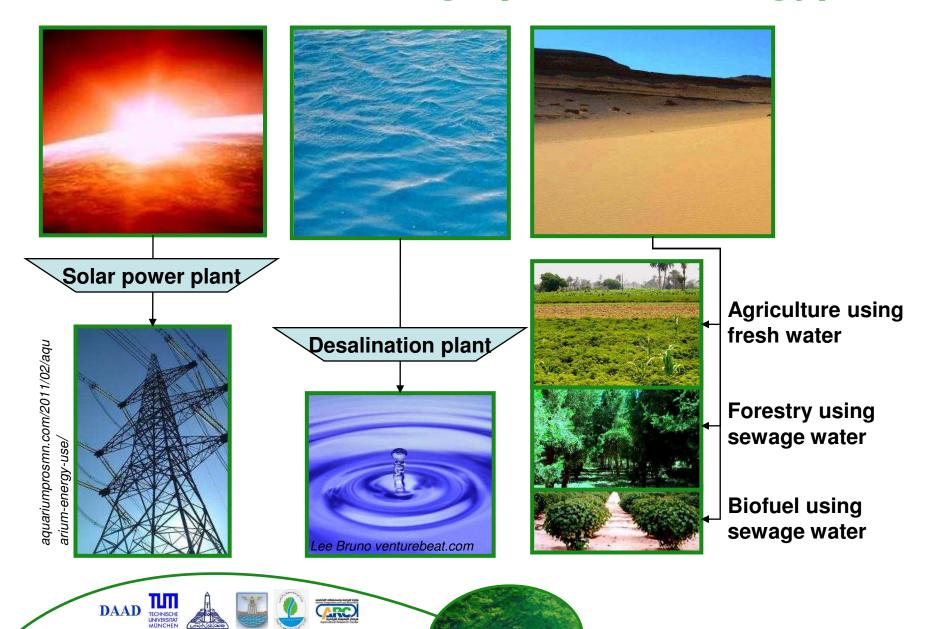
21%

16%

2%

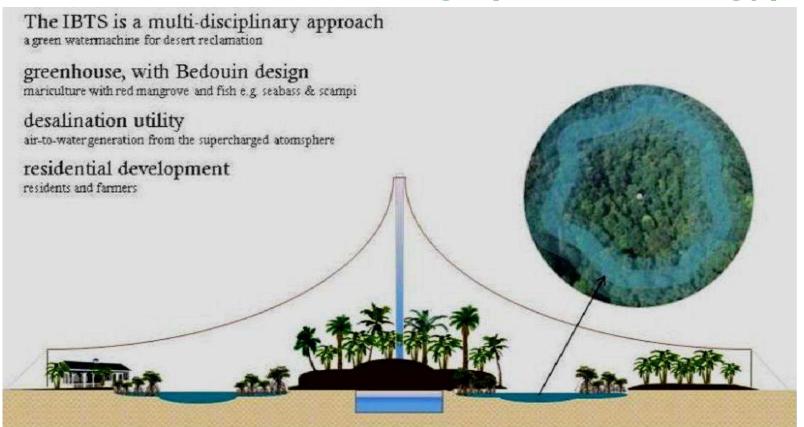
The Nile delta today

According to the Executive Secretariat of the United Nations Convention to Combat Desertification, Egypt lost 9% of its arable lands to constructions over the past 36 years. The country is ranked first in the rate of desertification with a loss rate of 3.5 acres per hour (35 ha daily) of fertile Delta agricultural land, which is an incomparable rate in the world statistics.


Greatest challenges facing Egypt

"The current situation in Egypt is alarming: Modern Egyptians are directly heading towards the certain extermination of their children and grandchildren, and thus the destruction of an ancient civilisation, unless urgent actions are immediately undertaken" (El Kateb, 2012).

- ➤ Arid/desert climate
- Water scarcity
- ➤ Misuse of the limited fertile land to secure food for the increasing population (89 million)
- ➤ High susceptibility to climate change: Egypt is ranked 3rd in rising sea levels after all low-lying Island States and Vietnam (World Bank, 2009)
- ➤ Mismanagement of resources
- > Absence of innovative, environmentally-friendly solutions.


Resources with high potential in Egypt

Establishment of Plantation Forests and Development of Sustainable Forestry in Desert Lands of Egypt Using Sewage Water

Education and Research

Use of resources with high potential in Egypt

Outline of simplified version of an IBTS, Integrated Biotectural System (Berdellé and El Kateb)

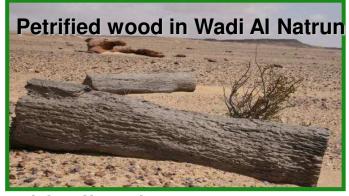
Objective: Management of resources in a sustainable way to secure water and food by steady supply.

Forestry in Egypt

Egypt has almost no natural forests. We can find:

Relic of nature woodlands on the slopes of Gebel Elba (Mountain Elba) in the Elba Protected Area in the southern of the country, the largest protected area in Egypt (over 36,000 km²).

Sparse, scattered mangroves along the red sea coast.


Forestry in Egypt (continued)

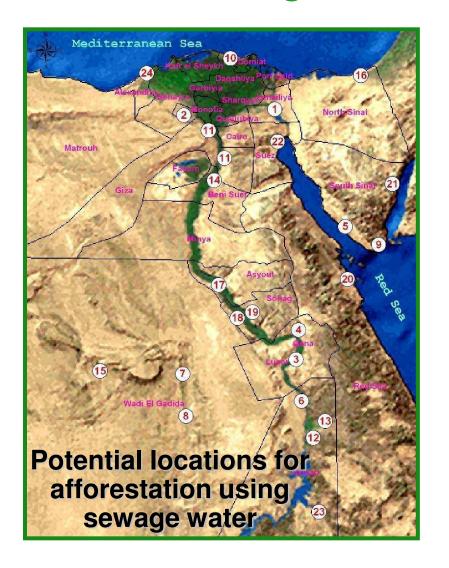
- ➤ A few indigenous species occur over the country. These include:
 - sycamore,
 - acacia,
 - tamarisk,
 - carob,
 - popular,
 - mulberry-trees and
 - above all date-palms as well as various fruit trees.
- Forestry in Egypt is mainly based on plantation forests with the most common species being:
 - Casuarina spp. and
 - Eucalyptus spp.

Forestry in Egypt (continued)

Many excavations in various parts of the country support the opinion that large parts of ancient Egypt at both Nile banks were forest zones. Also the Sinai Peninsula with its many valleys was rich in forest.

The names of the valleys are still good indication.

- At the end of the first century, over a thousand years ago during the Fatimids era, Egypt was the first country in the world, which established a national forest organisation (Goldmann, 2001). Usage of wood was well managed. Wood was mainly used for the construction of cargo ships. Thousands of ships of a size of about 85m long and 35m abeam were built.
- ➤ Today, far less than 0.1% (around 720 km²) of the country's land area is covered with trees.


Egyptian National Programme for Afforestation

Afforestation is the planting of trees on lands formerly used for purposes other than forestry. It is a cost-effective tool to reduce emission. Planting large areas of new forests is effective to slow the increase in atmospheric carbon dioxide.

- ➤ In the mid 90s, the "National Programme for the Safe Use of Treated Sewage Water for Afforestation*" was launched to mainly improve the prevailing environmental situation by
 - making use of unutilised sewage water, which is a hazard for the environment and in addition a waste of water resource and nutrients, in
 - establishing forest plantations "green areas" to support the efforts exerted to stabilise the greenhouse gas concentrations in the atmosphere.
- ➤ Within the frame of this programme, a **pilot project** on over 6,000 hectares spread over the country was conducted to determine the success/failure of afforestation using basic-treated sewage water.

National Programme for Afforestation (continued)

Planted species within the pilot project

- Acacia (Acacia nilotica and Acacia saligna)
- Casuarina (Casuarina equisetifolia)
- Cupressus (Cupressus sempervirens)
- Eucalyptus (Eucalyptus camaldulensis)
- African Mahogany (Khaya senegalensis)
- ➤ Neem (*Azadirachta indica*)
- Pinus (Pinus pinea)
- Popular (Populus spp.)
- Jatropha (Jatropha curcas) and Jojoba (Simmondsia chinensis) as biofuel crop
- Sisal (agava sisalana) and ornamental trees

National Programme for Afforestation (continued)

Education and Research

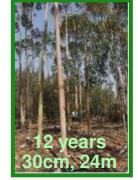
Potential of the afforestation in Egypt

senegalensis Khaya

Eucalyptus

Eucalyptus camaldulensis

(civil wastewater) Ismailia



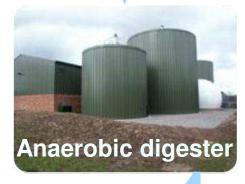
Potential of the afforestation in Egypt (continued)

Estimated yield (El Kateb and Mosandl, 2012)


	Eucalyptus citriodora	Eucalyptus camaldulensis	Khaya senegalensis
Rotation period	11 years	12 years	15 years
Total volume*	348 m ³ /ha	346 m ³ /ha	333 m ³ /ha
Total biomass	306 t/ha	325 t/ha	241 t/ha
Annual CO ₂ sequestration	51 t/ha/year	50 t/ha/year	30 t/ha/year

*Compared to Germany, the leading country in Forestry in Europe, this volume in average for all tree species is achieved after 60 years. This means that the same yield in Egypt is attained 4.5 times earlier than in Germany.

Potential of wastewater in Egypt



Sludge

Heavy metals removal and Sedimentrecovery ation tank treatment Aeration Anoxic tank treatment

Industrial wastewater

Heavy metals

Treated wastewater with high levels of the nutrients nitrogen and phosphorus

Fertiliser

Biogas

Egyptian-German Collaboration

Ministry of Agriculture and Land Reclamation **Ministry of State for Environmental Affairs**

National Programme for the Safe Use of Treated Sewage Water for Afforestation

administration, coordination, infrastructure, sewage water analysis

Bavarian State Ministry of Agriculture and Forestry

knowledge transfer, exchange of experts

Forest Finance Group

forest carbon development, sponsoring, commercial application

Department of Agricultural Engineering, Ain Shams University

(water research, irrigation)

Department of Forestry and Wood Technology, University of Alexandria (silviculture research)

Agriculture Research Centre, Ministry of Agriculture and Land Reclamation (soil research, forest tee breeding)

Institute of Silviculture, Technische **Universität München (TUM)**

(silviculture research, forest tree breeding)

Institute of Hydraulic and Water Resources Engineering, TUM

(water research)

Institute of Water Quality Control, TUM

(wastewater research)

German Academic Exchange Service (DAAD)

supports enhancement of education and research in Egypt

Multi-functionality of the afforestation in Egypt

- Decreasing pollution as growing trees absorb carbon dioxide from the atmosphere
- > Protection against desertification and erosion
- Sand dune fixation and coastal protection
- > Efficient use of water resources
- > Wood production, and biofuel-crop production
- Human settlement protection from wind and sand
- ➤ Food security for an increasing population through the protection of adjacent arable and new reclaimed lands from wind and combating desertification
- Establishment of new industries related to wood and wood processing
- Creating new jobs and qualification opportunities among young people whose unemployment rate is high. Beside the attraction of forests in arid regions to local inhabitants as well as tourists.

Opportunity for large scale afforestation in Egypt

Resources

- sewage water (6.3 billion m³ annually, of which 2.6 billion m³ is only treated) and
- desert lands of over 950 thousand km².

Potential

Using 5.5 billion m³ sewage water for the afforestation and assuming an average annual water requirement of 8,500 m³/ha

- 650 thousand ha in the desert lands can be afforested (approximately 20% of the total agriculture area) and
- 25 million tons of CO₂ annually can be stored.

Large-scale afforestation may stimulate cloud formation and may result in rainfall (University of Hohenheim 2012) that the country urgently needs.

Approach to establishment of large-scale plantation forests in the desert lands of Egypt

- Making optimal use of the potential available in the wastewater and in plantation forests.
- ➤ Development of sustainable forestry in desert lands by improving productivity, quality, technology, cost-effectiveness, and economic returns of the plantation forests.
- > Development of sustainable management for the wastewater resources.
- ➤ Building of forest administration liable to implement the forestry policy, to provide guidelines for forest management, to approve and to control the implementation of forest management plans.
- > Capacity building of trainers and technical staff.
- Enhancing education and research related to wastewater and forest management.
- ➤ Conducting interdisciplinary researches to accompany the afforestation activities and develop decision support systems.

Accompanying Scientific Studies - Scientific Approach

Applied Research

Selection of species, use of high-quality seed materials, establishing windbreak systems, initiating tree breeding programme

Identifying for each species under different environmental conditions the most appropriate: irrigation system, level of water requirement, soil improvement technique (biochar, compost, mycorrhiza, soil conditioner)

Identifying the most effective silvicultural technique for each species under different environmental conditions, according to the desired objective of the afforestation

Assessment

Assessment of sewage water

Improvement of treatment, quality and transportation of wastewater

Assessment of plantation forests established at the pilot project phase

Evaluation of the status of the afforstation for deriving appropriate silviculture techniques

Collecting further ecological, and socio-economical information

Data and statistical analyses, and simulation modelling

Management Science

Development of a decision support system for the sustainable management of plantation forests in arid regions

Application of management science

Thank you for your kind attention

Hany El Kateb
Institute of Silviculture
Technische Universität München (TUM)

